Nonparametric Bayesian Mixed-effects Models for Multi-task Learning

نویسنده

  • Yuyang Wang
چکیده

In many real world problems we are interested in learning multiple tasks while the training set for each task is quite small. When the different tasks are related, one can learn all tasks simultaneously and aim to get improved predictive performance by taking advantage of the common aspects of all tasks. This general idea is known as multi-task learning and it has been successfully investigated in several technical settings, with applications in many areas. In this thesis we explore a Bayesian realization of this idea especially using Gaussian Processes (GP) where sharing the prior and its parameters among the tasks can be seen to implement multi-task learning. Our focus is on the functional mixed-effects model. More specifically, we propose a family of novel Nonparametric Bayesian models, Grouped mixed-effects GP models, where each individual task is given by a fixed-effect, taken from one of a set of unknown groups, plus a random individual effect function that captures variations among individuals. The proposed models provide a unified algorithmic framework to solve time series prediction, clustering and classification. We propose the shift-invariant version of Grouped mixed-effects GP to cope with periodic time series that arise in astrophysics when using data for periodic variable stars. We develop an efficient EM algorithm to learn the parameters of the model, and as a special case we obtain the Gaussian mixture model and EM algorithm for phased-shifted periodic time series. Furthermore, we extend the proposed model by using a Dirichlet Process prior, thereby leading to an infinite mixture model. A Variational Bayesian approach is developed for inference in this model, leading to an efficient algorithm for model selection that automatically chooses an appropriii ate model order for the data. We present the first sparse solution to learn the Grouped mixed-effects GP. We show that, given a desired model order, how the sparse approximation can be obtained by maximizing a variational lower bound on the marginal likelihood, generalizing ideas from single-task Gaussian processes to handle the mixed-effects model as well as grouping. Finally, the thesis investigates the period estimation problem through the lens of machine learning. Using GP, we propose a novel method for period finding that does not make assumptions on the shape of the periodic function. The algorithm combines gradient optimization with grid search and incorporates several mechanisms to overcome the high computational complexity of GP. We also propose a novel approach for using domain knowledge, in the form of a probabilistic generative model, and incorporate such knowledge into the period estimation algorithm, yielding significant improvements in the accuracy of period identification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Bayesian Multi-task Learning with Max-margin Posterior Regularization

Learning a common latent representation can capture the relationships and share statistic strength among multiple tasks. To automatically resolve the unknown dimensionality of the latent representation, nonparametric Bayesian methods have been successfully developed with a generative process describing the observed data. In this paper, we present a discriminative approach to learning nonparamet...

متن کامل

Bayesian Max-margin Multi-Task Learning with Data Augmentation

Both max-margin and Bayesian methods have been extensively studied in multi-task learning, but have rarely been considered together. We present Bayesian max-margin multi-task learning, which conjoins the two schools of methods, thus allowing the discriminative max-margin methods to enjoy the great flexibility of Bayesian methods on incorporating rich prior information as well as performing nonp...

متن کامل

Regularized Bayesian Inference and Infinite Latent SVMs Bayesian Inference with Posterior Regularization and applications to Infinite Latent SVMs

Existing Bayesian models, especially nonparametric Bayesian methods, rely on specially conceived priors to incorporate domain knowledge for discovering improved latent representations. While priors can affect posterior distributions through Bayes’ theorem, imposing posterior regularization is arguably more direct and in some cases can be more natural and easier. In this paper, we present regula...

متن کامل

Infinite Latent SVM for Classification and Multi-task Learning

Unlike existing nonparametric Bayesian models, which rely solely on specially conceived priors to incorporate domain knowledge for discovering improved latent representations, we study nonparametric Bayesian inference with regularization on the desired posterior distributions. While priors can indirectly affect posterior distributions through Bayes’ theorem, imposing posterior regularization is...

متن کامل

Bayesian Analysis for Penalized Spline Regression Using WinBUGS

Penalized splines can be viewed as BLUPs in a mixed model framework, which allows the use of mixed model software for smoothing. Thus, software originally developed for Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013